Macroscopics
Through a Chapman-Enskog expansion it is possible to recover the following macroscopic balance equations from LBE:
(1)\[\begin{split}&\partial_t\rho + \partial_\alpha\left( \rho u_\alpha \right) = 0 \\
&\partial_t\left(\rho u_\alpha\right) + \partial_\beta\left(\rho u_\alpha u_\beta\right)
= - \partial_\alpha p + \partial_\beta\left[\eta\left(\partial_\alpha u_\beta +
\partial_\beta u_\alpha\right)\right] + F_\alpha\end{split}\]
such that the fluid’s dynamic viscosity can be related to LBM mesoscopic variables as:
(2)\[\eta = \rho c_s^2\Delta t\left(\frac{1}{\omega} - \frac{1}{2}\right)\]
Important
The continuity and Navier-Stokes equations are recovered when the Mach number \(u_{\mathrm{max}}/ c_s\) is smaller than 0.3, which means that the maximum velocity must be controlled.
The macroscopics such as density \(\rho\), and velocity are also recovered from the populations moments, which are:
(3)\[\sum_{i=0}^{q-1}f_{i}=\rho,\]
(4)\[\sum_{i=0}^{q-1}f_{i}c_{i,\alpha}=\rho u_{\alpha}-\frac{\Delta t}{2}F_{\alpha},\]
We also define the second-order moment of non-equilibrium populations:
(5)\[\Pi_{\alpha\beta}^{\mathrm{neq}} = f_{i}^{\mathrm{neq}}c_{i\alpha}c_{i\beta}\]
and the rate-of-strain is computed from the second-order moment of non-equilibrium populations:
(6)\[S_{\alpha\beta} = - \frac{\omega}{2 \rho c_s^2 \Delta t} \left[ \Pi_{\alpha\beta}^{\mathrm{neq}} +
\frac{\Delta t}{2}\left( F_\alpha u_\beta + F_\beta u_\alpha \right) \right]\]
In return, the the second-order moment of non-equilibrium populations \(\Pi_{\alpha\beta}^{\mathrm{neq}}\) can be calculated from the rate-of-strain tensor with:
(7)\[\Pi_{\alpha\beta}^{\mathrm{neq}} = - \frac{2 \rho c_s^2 \Delta t}{\omega}S_{\alpha\beta} -
\frac{\Delta t}{2}\left( F_\alpha u_\beta + F_\beta u_\alpha \right)\]